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Introduction

Introduction

In this lecture we discuss the Poisson regression model and some applications.
Poisson regression deals with situations in which the dependent variable is a count.
We’ll start by quickly reviewing properties of the Poisson.
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Introduction The Poisson Distribution

Introduction
The Poisson Distribution

When events arrive without any systematic “clustering,” i.e., they arrive with a known
average rate in a fixed time period but each event arrives at a time independent of the
time since the last event, the exact integer number of events can be modeled with the
Poisson distribution
The Poisson is a single parameter family, the parameter being λ, the expected number of
events in the interval of interest
For a Poisson random variable X , the probability of exactly r events is

Pr(X = r) =
λre−λ

r !
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Introduction The Poisson Distribution

Introduction
The Poisson Distribution

The Poisson is used widely to model occurrences of low probability events.
A random variable X having a Poisson distribution with parameter λ has mean and
variance given by

E (X ) = λ

Var(X ) = λ
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Introduction The Poisson Distribution

Introduction
The Poisson Distribution

The Poisson distribution is a limiting case of the binomial distribution when the number
of trials becomes large while the expectation remains stable, i.e., the probability of
success is very small.
An important additional property of the Poisson distribution is that sums of independent
Poisson variates are themselves Poisson variates, i.e., if Y1 and Y2 are independent with
Yi having a P(µi ) distribution, then

Y1 + Y2 ∼ P(µ1 + µ2) (1)

As we shall see, the key implication of this result is that individual and grouped data can
both be analyzed with the Poisson distribution.
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An Introductory Example

An Introductory Example

On his superb website at data.princeton.edu(which I strongly recommend as a source for
reading and examples), Germán Rodŕıguez presents an introductory example involving data
from the World Fertility Study.

The Children Ever Born (ceb) Data

The dataset has 70 rows representing grouped individual data. Each row has entries for:

The cell number (1 to 71, cell 68 has no observations)
Marriage duration (1=0–4, 2=5–9, 3=10–14, 4=15–19, 5=20–24, 6=25–29)
Residence (1=Suva, 2=Urban, 3=Rural)
Education (1=none, 2=lower primary, 3=upper primary, 4=secondary+)
Mean number of children ever born (e.g. 0.50)
Variance of children ever born (e.g. 1.14)
Number of women in the cell (e.g. 8)

Reference: Little, R. J. A. (1978). Generalized Linear Models for Cross-Classified Data from
the WFS. World Fertility Survey Technical Bulletins, Number 5.
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An Introductory Example

Introduction
The Poisson Distribution

A tabular presentation shows data on the number of children ever born to married Indian
women classified by:

1 Duration since their first marriage (grouped in six categories)
2 Type of place of residence (Suva, other urban and rural)
3 Educational level (classified in four categories: none, lower primary, upper primary, and

secondary or higher)

Each cell in the table shows the mean, the variance and the number of observations.
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An Introductory Example

Introduction
The Poisson Distribution
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An Introductory Example

Introduction
The Poisson Distribution

The unit of analysis is the individual woman.
The response variable is the number of children given birth to, and the potential predictor
variables are

1 Duration since her first marriage
2 Type of place where she resides
3 Her educational level, classified in four categories.
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The Poisson Regression Model

The Poisson Regression Model

The Poisson regression model assumes that the sample of n observations yi are
observations on independent Poisson variables Yi with mean µi .
Note that, if this model is correct, the equal variance assumption of classic linear
regression is violated, since the Yi have means equal to their variances.
So we fit the generalized linear model,

log(µi ) = x′iβ (2)

We say that the Poisson regression model is a generalized linear model with Poisson error
and a log link.
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The Poisson Regression Model

The Poisson Regression Model

An alternative version of Equation 2 is

µi = exp(x′iβ) (3)

This implies that one unit increases in an xj are associated with a multiplication of µj by
exp(βj).
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The Poisson Regression Model Grouped Data and the Offset

The Poisson Regression Model
Grouped Data and the Offset

Note that the model of Equation 2 refers to individual observations, but the table gives
summary measures. Do we need the individual observations to proceed?
No, because, as Germán Rodŕıguez explains very clearly in his lecture notes, we can apply
the result of Equation 1.
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The Poisson Regression Model Grouped Data and the Offset

The Poisson Regression Model
Grouped Data and the Offset

Specifically, define Yijkl to be the number of children borne by the l-th woman in the
(i , j , k)-th group, where i denotes marital duration, j residence and k education.
Let Yijk• =

∑
l Yijkl be the group total shown in the table. Then if each of the

observations in this group is a realization of an independent Poisson variate with mean
µijk , then the group total will be a realization of a Poisson variate with mean nijkµijk ,
where nijk is the number of observations in the (i , j , k)-th cell.
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The Poisson Regression Model Grouped Data and the Offset

The Poisson Regression Model
Grouped Data and the Offset

Suppose now that you postulate a log-linear model for the individual means, say

log(µijkl) = log E (Yijkl) = x′ijkβ (4)

Then the log of the expected value of the group total is

log(E (Yijk)) = log(nijkµijk) (5)

= log(nijk) + x′ijkβ (6)
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The Poisson Regression Model Grouped Data and the Offset

The Poisson Regression Model
Grouped Data and the Offset

Thus, the group totals follow a log-linear model with exactly the same coefficients β as
the individual means, except for the fact that the linear predictor includes the term
log(nijk).
This term is referred to as the offset. Often, when the response is a count of events, the
offset represents the log of some measure of exposure, in this case the number of women.
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Testing Models of the Fertility Data

Testing Models of the Fertility Data

Let’s consider some models for predicting the fertility data from our potential predictors.
Our first 4 models are:

1 The null model, including only an intercept.
2 A model predicting number of children from Duration (D).
3 A model predicting number of children from Residence (R).
4 A model predicting number of children from Education (E).

To fit the models with Poisson regression, we use the glm package, specifying a poisson

family (the log link is the default).
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Testing Models of the Fertility Data Simple One-Variable Models

Testing Models of the Fertility Data
Simple One-Variable Models

Here we fit simple models that predict number of children from duration, region of
residence, and education. Let’s begin by looking carefully at a model that predicts
number of children solely from the duration of their childbearing years.]

> ceb.data <- read.table("ceb.dat",header=T)

> fit.D <- glm(y~dur,family="poisson",

+ offset=log(n),data=ceb.data)

> fit.E <- glm(y~educ,family="poisson",

+ offset=log(n),data=ceb.data)

> fit.R <- glm(y~res,family="poisson",

+ offset=log(n),data=ceb.data)

Note that, in order to fit the model correctly, we had to specify family ="poisson" and
offset=log(n).
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Testing Models of the Fertility Data Predicting Children Ever Born from Duration

Testing Models of the Fertility Data
Predicting Children Ever Born from Duration

The dur variable is categorical, so R automatically codes its 6 categories into 5 variables.
Each of these variables takes on a value of 1 for its respective category.
The first category, 00-04, and has no variable representing it. Consequently, it is the
“reference category” and has a score of zero.
All the other categories are represented by dummy predictor variables that take on the
value 1 if dur has that category—otherwise the dummy variable has a code of zero.

James H. Steiger (Vanderbilt University) Poisson Regression 19 / 49



Testing Models of the Fertility Data Predicting Children Ever Born from Duration

Testing Models of the Fertility Data
Predicting Children Ever Born from Duration

Let’s look at some output:

> summary(fit.D)

Call:

glm(formula = y ~ dur, family = "poisson", data = ceb.data, offset = log(n))

Deviance Residuals:

Min 1Q Median 3Q Max

-3.5626 -1.4608 -0.5515 0.6060 4.0093

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.10413 0.04416 -2.358 0.0184 *

dur05-09 1.04556 0.05241 19.951 <2e-16 ***

dur10-14 1.44605 0.05025 28.779 <2e-16 ***

dur15-19 1.70719 0.04976 34.310 <2e-16 ***

dur20-24 1.87801 0.04966 37.818 <2e-16 ***

dur25-29 2.07923 0.04752 43.756 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3731.52 on 69 degrees of freedom

Residual deviance: 165.84 on 64 degrees of freedom

AIC: Inf

Number of Fisher Scoring iterations: 4
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Testing Models of the Fertility Data Predicting Children Ever Born from Duration

Testing Models of the Fertility Data
Predicting Children Ever Born from Duration

Consider a woman whose first marriage was in the last 0–4 years. On average, such
women have exp(−0.1) = 0.9 children.
Consider, on the other hand, a woman whose duration is 15–19 years. Such women have,
on average exp(−0.1 + 1.71) = 4.97 children.
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Testing Models of the Fertility Data Predicting Children Ever Born from Duration

Testing Models of the Fertility Data
Predicting Children Ever Born from Duration

Next, let’s look at education alone as a predictor.

> summary(fit.E)

Call:

glm(formula = y ~ educ, family = "poisson", data = ceb.data,

offset = log(n))

Deviance Residuals:

Min 1Q Median 3Q Max

-19.2952 -3.0804 0.7426 3.8574 13.1418

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.43567 0.01594 90.090 <2e-16 ***

educnone 0.21154 0.02168 9.759 <2e-16 ***

educsec+ -1.01234 0.05176 -19.557 <2e-16 ***

educupper -0.40473 0.02951 -13.714 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3731.5 on 69 degrees of freedom

Residual deviance: 2661.0 on 66 degrees of freedom

AIC: Inf

Number of Fisher Scoring iterations: 5
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Testing Models of the Fertility Data Predicting Children Ever Born from Duration

Testing Models of the Fertility Data
Predicting Children Ever Born from Duration

With 4 education categories, we need 3 dummy variables. Which category is the
“reference” category in this case?
Consider a woman whose education was “lower primary.” Such women have, on average,
exp(1.44) = 4.2 children.
Consider, on the other hand, a woman whose educational level is secondary+. Such
women have, on average, exp(1.44 + −1.01) = 1.53 children.
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Testing Models of the Fertility Data Re-ordering the Levels of a Factor

Testing Models of the Fertility Data
Re-ordering the Levels of a Factor

In the preceding analysis, we discovered that R ordered the levels of the educ factor in a
way that was somewhat suboptimal for presentation purposes.
Since the levels of education form a natural order, we would like educnone to be the
reference category, since it is a “natural” category for the intercept.
There are a number of ways our intention can be communicated to R. For example, R has
a relevel function you can use.
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Testing Models of the Fertility Data Re-ordering the Levels of a Factor

Testing Models of the Fertility Data
Re-ordering the Levels of a Factor

However, perhaps the most natural approach, which also scores high on “code
readability,” is to recode the factor and recompute the fit object as shown below.

> ceb.data$educ <- factor(ceb.data$educ,levels = c("none","lower","upper","sec+"))

> fit.E <- glm(y~ educ,family="poisson", offset=log(n),data=ceb.data)

> summary(fit.E)

Call:

glm(formula = y ~ educ, family = "poisson", data = ceb.data,

offset = log(n))

Deviance Residuals:

Min 1Q Median 3Q Max

-19.2952 -3.0804 0.7426 3.8574 13.1418

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.64721 0.01469 112.104 <2e-16 ***

educlower -0.21154 0.02168 -9.759 <2e-16 ***

educupper -0.61627 0.02886 -21.353 <2e-16 ***

educsec+ -1.22388 0.05139 -23.814 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3731.5 on 69 degrees of freedom

Residual deviance: 2661.0 on 66 degrees of freedom

AIC: Inf

Number of Fisher Scoring iterations: 5
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Testing Models of the Fertility Data You Try It!

Testing Models of the Fertility Data
You Try It!

Examine the model predicting number of children solely from place of residence. What is
the reference category?
What is the average number of children ever born for women in the reference category?
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Testing Models of the Fertility Data Two-Factor Additive Models

Testing Models of the Fertility Data
Two-Factor Additive Models

Next we add education as a predictor to duration. The anova function helps us to see
that there is a significant improvement.

> fit.NULL <-glm(y~1,family="poisson",

+ offset=log(n),data=ceb.data)

> fit.D.E <- glm(y~dur+educ,family="poisson",

+ offset=log(n),data=ceb.data)

> anova(fit.NULL,fit.D,fit.D.E)

Analysis of Deviance Table

Model 1: y ~ 1

Model 2: y ~ dur

Model 3: y ~ dur + educ

Resid. Df Resid. Dev Df Deviance

1 69 3731.5

2 64 165.8 5 3565.7

3 61 100.0 3 65.8
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Testing Models of the Fertility Data Three-Factor Additive Model

Testing Models of the Fertility Data
Three-Factor Additive Model

Next we add residence to duration and education.

> fit.D.E.R <- glm(y~dur+educ+res,

+ family="poisson",offset=log(n),data=ceb.data)

> anova(fit.NULL,fit.D,fit.D.E,fit.D.E.R)

Analysis of Deviance Table

Model 1: y ~ 1

Model 2: y ~ dur

Model 3: y ~ dur + educ

Model 4: y ~ dur + educ + res

Resid. Df Resid. Dev Df Deviance

1 69 3731.5

2 64 165.8 5 3565.7

3 61 100.0 3 65.8

4 59 70.7 2 29.4
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Testing Models of the Fertility Data Three-Factor Additive Model

Testing Models of the Fertility Data
Three-Factor Additive Model

> summary(fit.D.E.R)

Call:

glm(formula = y ~ dur + educ + res, family = "poisson", data = ceb.data,

offset = log(n))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2912 -0.6649 0.0759 0.6606 3.6790

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.03387 0.04870 0.696 0.48674

dur05-09 0.99765 0.05275 18.912 < 2e-16 ***

dur10-14 1.37053 0.05108 26.833 < 2e-16 ***

dur15-19 1.61423 0.05121 31.524 < 2e-16 ***

dur20-24 1.78549 0.05122 34.856 < 2e-16 ***

dur25-29 1.97679 0.05005 39.500 < 2e-16 ***

educlower 0.02308 0.02266 1.019 0.30832

educupper -0.10167 0.03099 -3.281 0.00104 **

educsec+ -0.30958 0.05519 -5.609 2.03e-08 ***

resSuva -0.15122 0.02833 -5.338 9.37e-08 ***

resurban -0.03896 0.02462 -1.582 0.11363

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3731.525 on 69 degrees of freedom

Residual deviance: 70.653 on 59 degrees of freedom

AIC: Inf

Number of Fisher Scoring iterations: 4

James H. Steiger (Vanderbilt University) Poisson Regression 29 / 49



Testing Models of the Fertility Data Three-Factor Additive Model

Testing Models of the Fertility Data
Three-Factor Additive Model

What is the predicted average number of children for women married 5–9 years, living in
Suva, with post-secondary education?
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Modeling Overdispersion

Modeling Overdispersion

As we mentioned at the outset, Poisson distributed variables have variances equal to their
means.
Consequently, if we observe a set of observations xi that truly are realizations of a Poisson
random variable X , these observations should show a sample variance that is reasonably
close to their sample mean.
In a similar vein, if we observe a set of sample proportions p̂i , each based on Ni

independent observations, and our model is that they all represent samples in a situation
where p remains stable, then the variation of the p̂i should be consistent with the formula
p(1 − p)/Ni .
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

There are numerous reasons why overdispersion can occur in practice. Let’s consider
sample proportions based on the binomial.
Suppose we hypothesize that the support enjoyed by President Obama is constant across
5 midwestern states. That is, the proportion of people in the populations of those states
who would answer “Yes” to a particular question is constant.
We perform opinion polls by randomly sampling 200 people in each of the 5 states.
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

We observe the following results: Wisconsin 0.285, Michigan 0.565, Illinois 0.280, Iowa
0.605, Minnesota .765.
An unbiased estimate of the average proportion in these states can be obtained by simply
averaging the 5 proportions, since each was based on a sample of size N = 200.
Using R, we obtain:

> data <- c(0.285,0.565,0.280,0.605,.765)

> mean(data)

[1] 0.5
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

These proportions have a mean of 0.50. They also show considerable variability.
Is the variability of these proportions consistent with our binomial model, which states
that they are all representative of a constant proportion p?
There are several ways we might approach this question, some involving brute force
statistical simulation, others involving the use of statistical theory. Recall that sample
proportions based on N = 200 independent observations should show a variance of
p(1 − p)/N.
We can estimate this quantity in this case as

> 0.50*(1-0.50)/200

[1] 0.00125
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

On the other hand, these 5 sample proportions show a variance of

> var(data)

[1] 0.045025

The variance ratio is

> variance.ratio = var(data) / (0.50*(1-0.50)/200)

> variance.ratio

[1] 36.02

The variance of the proportions is 36.02 times as large as it should be. There are several
statistical tests we could perform to assess whether this variance ratio is statistically
significant, and they all reject the null hypothesis that the actual variance ratio is 1.
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

As an example, we could look at the residuals of the 5 sample proportions from their
fitted value of .50. The residuals are:

> residuals <- data - mean(data)

> residuals

[1] -0.215 0.065 -0.220 0.105 0.265

Each residual can be converted to a standardized residual z-score by dividing by its
estimated standard deviation.

> standardized.residuals <- residuals / sqrt(0.50*(1-0.50)/200)

We can then generate a χ2 statistic by taking the sum of squared residuals. The statistic
has the value

> chi.square <- sum(standardized.residuals^2)

> chi.square

[1] 144.08
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

We have to subtract one degree of freedom because we estimated p from the mean of the
proportions. Our χ2 statistic can be compared to the χ2 distribution with 4 degrees of
freedom. The 2-sided p − value is

> 2*(1-pchisq(chi.square,4))

[1] 0
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

Our sample proportions show overdispersion. Why?
The simplest explanation in this case is that they are not samples from a population with
a constant proportion p. That is, there is heterogeneity of support for Obama across
these 5 states.
Can you think of another reason why a set of proportions might show overdispersion?
(C.P.)
How about underdispersion? (C.P.)
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

Since counts are free to vary over the integers, they obviously can show a variance that is
either substantially greater or less than their mean, and thereby show overdispersion or
underdispersion relative to what is specified by the Poisson model.
As an example, suppose we examine the impact of the median income (in thousands) of
families in a neighborhood on the number of burglaries per month. Load the burglary.txt
data file, then plot burglaries as a function of median.income. These data represent
burglary counts for 500 metropolitan and suburban neighborhoods.

> plot(median.income,burglaries)
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

Let’s examine some data for evidence of overdispersion. First, we’ll grab scores
corresponding to a median.income between 59 and 61.

> test.data <- burglaries[median.income > 59 & median.income < 61]

> var(test.data)

[1] 22.53846

> mean(test.data)

[1] 7.333333

> var(test.data) / mean(test.data)

[1] 3.073427

The variance for these data is more than 3 times as large as the mean.
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

Let’s try another region of the plot.

> test.data <- burglaries[median.income > 39 & median.income < 41]

> var(test.data)

[1] 97.14286

> mean(test.data)

[1] 21.85714

> var(test.data) / mean(test.data)

[1] 4.444444
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Modeling Overdispersion Observing Overdispersion in Practice

Modeling Overdispersion
Observing Overdispersion in Practice

The data show clear evidence of overdispersion. Let’s fit a standard Poisson model to the
data.

> standard.fit <- glm(burglaries ~ median.income, family = "poisson")

> summary(standard.fit)

Call:

glm(formula = burglaries ~ median.income, family = "poisson")

Deviance Residuals:

Min 1Q Median 3Q Max

-6.6106 -1.2794 -0.2884 0.9102 7.7649

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.612422 0.055996 100.23 <2e-16 ***

median.income -0.061316 0.001091 -56.19 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4721.4 on 499 degrees of freedom

Residual deviance: 1452.6 on 498 degrees of freedom

AIC: 3196.4

Number of Fisher Scoring iterations: 5
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Fitting the Overdispersed Poisson Model

Fitting the Overdispersed Poisson Model

> plot(median.income,burglaries)

> curve(exp(coef(standard.fit)[1] + coef(standard.fit)[2]*x),add=TRUE,col="blue")
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The expected mean line, plotted with the coefficients from the model, looks like a nice fit
to the data.
However, the variance is several times the mean in this model, and since the standard
errors are based on the assumption that the variance is equal to the mean, this creates a
problem. The actual variance is several times what it should be, and so the standard
errors printed by the program are underestimates.
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Fitting the Overdispersed Poisson Model

Fitting the Overdispersed Poisson Model

There are two fairly standard ways of handling this in R.
One way assumes simply that the conditional distribution is like the Poisson, but with the
variance a constant multiple of the mean rather than being equal to the mean.
This approach is used in glm by selecting family="quasipoisson". Notice how the
dispersion parameter is estimated, and the estimated standard errors from the Poisson fit
are divided by the square root of this parameter to obtain the revised standard errors
shown on the next slide.
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Fitting the Overdispersed Poisson Model

Fitting the Overdispersed Poisson Model

> overdispersed.fit <- glm(burglaries ~ median.income,family="quasipoisson")

> summary(overdispersed.fit)

Call:

glm(formula = burglaries ~ median.income, family = "quasipoisson")

Deviance Residuals:

Min 1Q Median 3Q Max

-6.6106 -1.2794 -0.2884 0.9102 7.7649

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.612422 0.096108 58.40 <2e-16 ***

median.income -0.061316 0.001873 -32.74 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 2.945783)

Null deviance: 4721.4 on 499 degrees of freedom

Residual deviance: 1452.6 on 498 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5
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Another more sophisticated approach uses quasi-likelihood estimation to fit the negative
binomial model, which assumes that the log means predicted from median.income are
perturbed by random variation (having a gamma distribution).
This random variation means that individual observations, for a given value of the
predictors, can have different means, centered around x′β.
This leaves the conditional mean line the same, but inflates the variance relative to that
predicted by the Poisson.
The variance inflation is not constant, however. In the negative binomial, there is an
overdispersion parameter θ, but the variance and mean are related as follows:

σ2 = µ(1 + µ/θ) (7)
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We can fit the negative binomial model, using the MASS library function glm.nb. (Make
sure the MASS library is loaded.)

> negative.binomial.fit <- glm.nb(burglaries ~ median.income)

> summary(negative.binomial.fit)

Call:

glm.nb(formula = burglaries ~ median.income, init.theta = 4.956789611,

link = log)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.8813 -0.8490 -0.1922 0.6297 2.9637

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.57414 0.12042 46.29 <2e-16 ***

median.income -0.06060 0.00207 -29.27 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(4.9568) family taken to be 1)

Null deviance: 1606.97 on 499 degrees of freedom

Residual deviance: 545.33 on 498 degrees of freedom

AIC: 2730.7

Number of Fisher Scoring iterations: 1

Theta: 4.957

Std. Err.: 0.550

2 x log-likelihood: -2724.713
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In this case, the data were artificial. I created them according to the negative binomial
model µ = −.06x + 5.5, with overdispersion parameter θ = 5.
As you can see, in this case glm.nb estimates were very close to the true values, and the
χ2 fit statistic of 545.33 fails to reach significance at the .05 level, meaning that the
hypothesis of perfect fit cannot be rejected.
On the other hand, the quasipoisson family model fit, which assumes that the variance
is a constant multiple of the mean, could not fit these data nearly as well. The deviance
statistic of 1452.6 is much higher.
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Consider an instructive case, when median.income is 30. In this case, the mean and
variance are actually

> m <- exp(-.06 * 30 + 5.5)

> v <- m * (1+m/5)

> m

[1] 40.4473

> v

[1] 367.6442

The quasipoisson fit estimates them as

> m <- exp(coef(overdispersed.fit)[1] + coef(overdispersed.fit)[2] * 30)

> v <- m * 2.945783

> m

(Intercept)

43.50732

> v

(Intercept)

128.1631
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